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Transitions between regular oscillations and bursting oscillations that involve a
bifurcational process which culminates in the creation of a relative periodic orbit of
infinite period and infinite length are investigated both experimentally and numerically
in a short-aspect-ratio Taylor–Couette flow. This bifurcational process is novel in
that it is the accumulation point of a period-adding cascade at which the mid-
height reflection symmetry is broken. It is very rich and complex, involving very-
low-frequency states arising via homoclinic and heteroclinic dynamics, providing the
required patching between states with very different dynamics in neighbouring regions
of parameter space. The use of nonlinear dynamical systems theory together with
symmetry considerations has been crucial in interpreting the laboratory experimental
data as well as the results from the direct numerical simulations. The phenomenon
corresponds to dynamics well beyond the first few bifurcations from the basic state
and so is beyond the reach of traditional hydrodynamic stability analysis, but it
is not fully developed turbulence where a statistical or asymptotic approach could
be employed. It is a transitional phenomenon, where the phase dynamics of the
large-scale structures (jets of angular momentum emanating from the boundary layer
on the rotating inner cylinder) becomes complicated. Yet the complicated phase
dynamics remains accessible to an analysis of its space–time characteristics and a
comprehensive mechanical characterization emerges. The excellent agreement between
the experiments and the numerical simulations demonstrates the robustness of this
complex bifurcation phenomenon in a physically realized system with its inherent
imperfections and noise. Movies are available with the online version of the paper.

1. Introduction
Beyond the primary instability in fluid dynamic problems, which typically have

more than one governing parameter (e.g. parameters characterizing the ratios
of forces, such as the Reynolds number, and geometric parameters), subsequent
instabilities can often be understood in terms of more complicated codimension-
two bifurcations (Guckenheimer 1984) which act as organizing centres for the
local nonlinear dynamics in the multi-dimensional parameter space (Mullin 1993).
At such bifurcations, several eigenmodes compete and complex dynamics and
chaos are common, for example in local Takens–Bogdanov, fold–Hopf and Hopf–
Hopf bifurcations. Associated with these bifurcations one often encounters global
bifurcations, such as homoclinic/heteroclinic collisions. Other global bifurcations
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Figure 1. Experimentally determined (Abshagen 2000) bifurcation curves separating the
different regimes observed; the prominent stable state in each region is labelled in typeface
roman and the bifurcation curves are labelled in typeface italic.

involve a large region of phase space and are not as amenable to a local analysis via
normal forms. These include the SNIC (saddle-node of fixed points on an invariant
curve) bifurcation, the blue-sky bifurcation (saddle-node of cycles on an invariant
curve), and Feigenbaum period-doubling cascades.

A well-known hydrodynamic system displaying a large variety of different dynamics,
including most of the aforementioned bifurcations, is Taylor–Couette flow. A nice
feature of this system is that it is an enclosed flow in a simple geometry, which allows
very precise experiments and numerical simulations. In particular, the experiments
of Abshagen (2000) offer very detailed experimental results in a range of parameters
exhibiting a large variety of dynamics, as can be seen in figure 1. The figure shows
experimentally determined bifurcation curves in the aspect ratio–Reynolds number
(Γ, Re) parameter space for a Taylor–Couette flow with the inner cylinder rotating
and the outer cylinder and both endwalls stationary. The dynamics in the region of
parameter space shown are organized by several codimension-two bifurcations.

The experimental techniques and numerical methods used in this paper are
summarized in § 2 and § 3. These have already been used in the analysis of different but
related problems (Lopez & Marques 2003; Lopez, Marques & Shen 2004; Abshagen
et al. 2005a , b; Lopez & Marques 2005; Marques & Lopez 2006), and only the salient
aspects are presented.

Section 4 summarizes previously known results in this problem, for Reynolds
numbers below 800. For moderate Reynolds numbers (up to 400), the dynamics
are organized by the codimension-two fold–Hopf bifurcation, where a saddle-node
bifurcation curve SN and a Hopf bifurcation curve H intersect. Below the saddle-
node curve there exists a stable axisymmetric state, S1, with a single jet of angular
momentum coming off the boundary layer on the inner cylinder at the mid-plane;
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above the curve another stable solution, S2, appears. This is an axisymmetric state
with two jets symmetric about the mid-plane; S1 and S2 are depicted in figure 4. Both
states coexist and there is hysteretic behaviour between them around the saddle-node
curve (SN in figure 1). The details are described in § 4.1.

The two-jet state S2 undergoes a number of subsequent bifurcations that are
analysed in this paper. It undergoes a symmetry-breaking Hopf bifurcation H, leading
to a rotating wave state, RWS, with azimuthal wavenumber m = 1; this is described in
§ 4.2. The rotating wave is Z2-symmetric: it is invariant under the action of a reflection
about the geometric centre of the cylinders; this central reflection is also called an
inversion. For small aspect ratios, the rotating wave undergoes a secondary Hopf
bifurcation sHS to a modulated rotating wave MRWS, described in § 4.3. The spatial
Z2-symmetry of RWS becomes a space–time Z2 symmetry of MRWS. For large aspect
ratios, the inversion symmetry is broken in a pitchfork bifurcation (PF) resulting in
asymmetric rotating waves RWA and RW′

A, described in § 4.4. The transition between
the symmetric and non-symmetric bifurcated solutions, described in § 4.4, occurs along
the SNIC bifurcation curve in figure 1. This curve emerges from a narrow parameter
region of complex dynamics, where the sHS and PF bifurcation curves meet, described
in § 4.4. These results have already been described in Abshagen et al. (2005a , b). Note
that the rotating waves, RWS and RWA, are fixed points (equilibria) in a rotating
reference frame precessing around the cylinder axis at a convenient angular speed
(i.e. rotating with the precession frequencies of the rotating waves). Analogously,
the modulated rotating wave MRWS becomes a limit cycle in the appropriate
precessing frame. As such, rotating waves are also called relative equilibria, and
modulated rotating waves are called relative periodic orbits. We adopt this point
of view here and consider the characteristics of these relative solutions that are
independent of the reference frame considered, effectively filtering out the precession
frequency. These characteristics are introduced in § 4, and consist of the amplitude
and relative phase of the jets emanating from the inner cylinder due to centrifugal
instability.

Bifurcations of limit cycles (RWS and RWA) and relative limit cycles (MRWS and
MRWA) play an important role in the present study, and it is useful to list all the
possible isolated codimension-one bifurcations that a limit cycle may undergo. There
are seven of these bifurcations†. Four of them are local, i.e. they are bifurcations of
fixed points of ordinary differential equations (ODEs) or maps, and can be analysed
in detail from the corresponding normal form. They are: the Hopf bifurcation, where
the limit cycle collapses into a fixed point; the cyclic fold (saddle-node) bifurcation,
where the limit cycle collides with an unstable periodic orbit and vanishes; the
period-doubling or flip bifurcation where a multiplier of the orbit crosses the unit
circle through −1; and the secondary Hopf (or Neimark–Sacker) bifurcation where a
pair of complex-conjugate multipliers cross the unit circle, and the limit cycle becomes
a quasi-periodic solution on an invariant torus. All of these bifurcations are present
in the problem under consideration in this paper.

The remaining three bifurcations of limit cycles are global, and the period of the
limit cycle grows unbounded as the bifurcation point is approached. They are:

(a) The collision of the limit cycle with an external saddle fixed point, the saddle-
loop homoclinic (SLH ) bifurcation; the saddle exists before and after the bifurcation

† They are described in many books on dynamical systems, e.g. Shil’nikov et al. (2001), Kuznetsov
(2003), and at http://www.scholarpedia.org/article/Blue-sky catastrophe maintained by A.
Shil’nikov and D. Turaev.
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and its eigenvalues do not change sign in the process. The limit cycle’s length remains
finite and its period becomes unbounded as log(1/|μ|), where μ is the distance in
parameter space from the bifurcation.

(b) The occurrence of a saddle-node bifurcation (of fixed points) on an invariant
curve (SNIC bifurcation). The saddle appears at the bifurcation point, and has a zero
eigenvalue at the bifurcation. Following the bifurcation, a pair of fixed points, one
stable and the other unstable, exists on the invariant curve. The limit cycle’s length
remains finite and its period becomes unbounded as 1/

√
(|μ|).

(c) The occurrence of a saddle-node bifurcation of cycles on an invariant curve
(the blue-sky bifurcation). On approaching the bifurcation point, the limit cycle starts
to revolve around the ghost of the saddle-node of cycles, increasing both its period
and its length. At the bifurcation point, both the period and length of the limit cycle
become infinite.
The blue-sky bifurcation has only been studied relatively recently. The question
about the possible existence of a periodic orbit bifurcation with its period and length
increasing without bound was raised by Palis & Pugh (1974). It was confirmed in 1995
by Turaev & Shil’nikov (1995) and Shil’nikov & Turaev (1997), who then provided a
simple low-dimensional example (Shil’nikov & Turaev 2000). Subsequently, examples
of blue-sky bifurcations have been found in model problems in fluid dynamics, such
as in two-dimensional binary convection (Meca et al. 2004). Note, however, that
some authors have used the term blue-sky inaccurately, referring to a variety of
different global bifurcations of limit cycles, including the aforementioned isolated
global bifurcations of limit cycles in which the cycle’s length remains finite (i.e. SLH
and SNIC bifurcations).

In this paper, new numerical simulations and experiments at larger Reynolds
numbers (Re � 800) are analysed in § 5. Both the experiments and the numerics reveal
a very rich array of dynamics which are not amenable to normal form analysis.
The asymmetric rotating wave RWA undergoes a secondary Hopf bifurcation sHA

to a modulated rotating wave MRWA, described in § 5.1. The transition between the
symmetric and non-symmetric bifurcated solutions now involves MRWS and MRWA,
and it is much more complicated than the SNIC bifurcation found at lower Reynolds
numbers. It consists of a cascade of heteroclinic collisions of MRWS with external
saddles, each collision increasing the period and length of the relative limit cycle. At
the accumulation point of this period-adding cascade (the PAC curve in figure 1), the
MRWS has infinite period and length, and disappears. At the same point, the stable
MRWA appears, also with infinite period but finite length. This process is described
in § 5.2 and § 5.3. At these large Reynolds numbers (Re � 800), additional bifurcations
take place, such as period-doubling bifurcations (PD) of MRWA, and chaos at even
higher Reynolds numbers (Re � 1000).

As the period-adding cascade of homoclinic bifurcations takes place in a narrow
parameter range, it may be very sensitive to small imperfections and noise in the
experiments. In the PAC region, both imperfections and noise play a role in the
interpretation of the experimental results. The experiments have very precise control
of temperature and angular velocities of the cylinders, as described in § 2. Nevertheless,
the temperature and angular velocities experience small random drifts (below the level
of uncertainty in experimental measurements), resulting in small variations in Re (and
in the aspect ratio Γ to a lesser extent). These drifts are effectively observed as noise.
Close to the accumulation point of the PAC, these small variations result in a drift
of the experimental state between the distinct periodic solutions that accumulate in
the PAC. In this regime, the experimentally observed state is no longer periodic,
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but instead exhibits characteristics of intermittency and bursting driven by the small
random drifts in the control parameters. This is explained in detail in § 5.4.

The Z2 reflection symmetry about the cylinder mid-plane is slightly broken by
small inherent imperfections in the experimental apparatus (Abshagen 2000). It is well-
known that systems with Z2 symmetry are particularly sensitive to imperfections, both
when Z2 is purely spatial (Benjamin 1978a , b; Benjamin & Mullin 1981; Crawford &
Knobloch 1991; Moehlis & Knobloch 1998; Knobloch & Moehlis 1999) as well
as when the Z2 symmetry is a space–time symmetry (Abshagen, Pfister & Mullin
2001; Marques, Lopez & Iranzo 2002). In some parameter ranges near the PAC, the
influence of the imperfections has indeed been observed, resulting in a preference for
one of the MRWA following the bifurcation. This is explained in detail in § 5.5. The
Taylor–Couette flow is hence seen as an extremely rich, well-defined hydrodynamics
problem in which to investigate the influence of imperfections and noise on the
nonlinear dynamics, and in particular to determine to what extent the observed
dynamics in the experiments are deterministic or due to the inevitable and ubiquitous
presence of noise in the physical experiment.

2. Experimental technique
The experimental setup of the Taylor–Couette system used for this study consists of

a fluid (silicon oil with kinematic viscosity ν = 10.2 mm2 s−1 at a nominal temperature
of 21◦C, with an absolute uncertainty of ±0.1 mm2 s−1) confined in the gap between
two concentric cylinders. The outer cylinder and the top and bottom endwalls were
held fixed. A phase-locked loop circuit controlled the angular velocity of the inner
cylinder, Ω , to an accuracy of better than one part in 10−4 in the short-term and 10−7

in the long-term average. The inner cylinder was machined from stainless steel with
radius r∗

i = 12.50±0.01 mm, while the outer cylinder, with r∗
o = 25.00±0.01 mm, was

made from optically polished glass. The apparatus was located in an air-controlled
cabinet and the laboratory was air conditioned. The temperature of the fluid was
thermostatically controlled to 21.00 ± 0.01◦C. The uncertainty in the temperature
contributes a relative uncertainty in the viscosity of about 0.0025 mm2 s−1 (given
by the variation of viscosity with temperature at 21◦C times the uncertainty in
temperature). The absolute uncertainty in viscosity produces a 1% uncertainty in the
absolute value of the Reynolds number. However, the relative uncertainty in Re due
to the temperature uncertainty (i.e. the relative uncertainty in the viscosity) is much
smaller, of order 0.01%. This is of the same order as the short-term uncertainty in
the angular frequency achieved by the phase-locked loop control.

The distance between the endwalls, h, is adjustable via a precision microscrew to
within an accuracy of 0.01 mm. In order to decouple the experimental setup from
vibrations it is mounted on an optical table. Laser Doppler velocimetry (LDV) was
used for measurements of the local flow velocity and laser light-sheet techniques were
used for flow visualization. Further technical details of the experimental apparatus
and measurement procedures can be found in Gerdts et al. (1994) and von Stamm
et al. (1996). A schematic and a photograph of the apparatus are shown in figure 2.

3. Navier–Stokes equations and the numerical scheme
Consider an incompressible flow confined in an annulus of inner radius r∗

i and
outer radius r∗

o and length h, driven by the constant rotation of the inner cylinder at
Ω rad s−1. The system is non-dimensionalized using the gap, d = r∗

o − r∗
i , as the length
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Figure 2. (a) Schematic and (b) photo of the experimental apparatus.

scale and the diffusive time across the gap, d2/ν, as the time scale. The equations
governing the flow are the Navier–Stokes equations together with initial and boundary
conditions. In cylindrical coordinates, (r, θ, z), we denote the non-dimensional velocity
vector and pressure by u = (u, v, w) and p, respectively. The system is governed by
three non-dimensional parameters: the radius ratio η = r∗

i /r∗
o , the annulus aspect

ratio Γ = h/d , and the Reynolds number Re = Ωdr∗
i /ν. Since the experimental

apparatus has radius ratio η = 0.5, we consider only this value in the numerical
simulations.

The non-dimensional Navier–Stokes equations are

∂t u + (u · ∇)u = −∇p + ∇2u, ∇ · u = 0, (3.1)

and the no-slip boundary conditions are u = v = w = 0 on all stationary boundaries,
i.e. at the outer cylinder, r = ro = r∗

o /d = 1/(1 − η) = 2, and the top and bottom
endwalls z = ±0.5h/d = ±0.5Γ , while on the rotating inner cylinder, r = ri = r∗

i /d =
η/(1 − η) = 1, u = w = 0 and v = Re.

To solve (3.1), a stiffly stable semi-implicit second-order projection scheme is used,
where the linear terms are treated implicitly while the nonlinear terms are explicit (see
Lopez & Shen 1998; Lopez, Marques & Shen 2002, for more details). For the space
variables, we use a Legendre–Fourier approximation. More precisely, the azimuthal
direction is discretized using a Fourier expansion with 2Nθ + 1 modes corresponding
to azimuthal wavenumbers m = 0, 1, 2, . . . Nθ , while the axial and radial directions
are discretized with a Legendre expansion. The spectral convergence of the code has
already been extensively described for related problems (Lopez & Marques 2003;
Lopez et al. 2004; Lopez & Marques 2005; Marques & Lopez 2006) as well as in
Abshagen et al. (2005a), where the same flow was computed and compared with the
experiments up to Re ≈ 780. The results presented here at Re = 830 have the highest
resolution used in that previous study, specifically 48 and 96 Legendre modes in the
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Figure 3. Energy (L2-norm) norm of the spectral modes in the radial (a), azimuthal (b) and
axial (c) directions, for a modulated rotating wave solution at Re = 830 and Γ = 3.16319.

radial and axial directions, respectively, Nθ = 10 Fourier modes, and a time-step of
δt = 2 × 10−5.

Care needs to be taken when solving a system with discontinuous boundary
conditions using spectral methods. The jump discontinuities in the azimuthal velocity
v where the rotating inner cylinder and the stationary endwall meet need to be
regularized in order to avoid spurious numerical oscillations (Gibb’s phenomenon)
and ensure spectral convergence. In our code, we replace the v = 0 boundary condition
on the stationary endwalls at z = ±0.5Γ with

v = Re exp
[

−
(r − ri

ε

)2 ]
, (3.2)

where ε is a small parameter that mimics the small gaps between the rotating inner
cylinder and the stationary endwall (we have used ε = 0.005). See Lopez & Shen
(1998) for further details of the use of this regularization in a spectral code.

The spectral convergence of the code has been checked by measuring the kinetic
energy (i.e. the L2-norm) of the spectral modes in the radial, azimuthal and axial
directions. Figure 3 shows plots of the spectral energies in one of the more complex
cases computed, the seven-loop solution in figure 16, at parameter values Re = 830
and Γ = 3.16319. The figure shows a decay of at least three orders of magnitude
in the energy of the spectral modes in the three directions: (a) radial, (b) azimuthal,
and (c) axial. With regard to temporal resolution, we note that the precession period
of the solutions is the fast time scale of the flow and that it is not dynamically
important (see § 4.3). The precession period is of order 10−2 viscous times, so that we
are computing with about 103 time-steps per precession period. The slow time scale
which characterizes the complex dynamics being analysed here corresponds to the
modulation period and it is of the order of the viscous time, and so we have about
105 time steps per modulation period; the dynamics reported here are adequately
resolved.

The symmetry of the system has important implications for its dynamics. The
system is invariant to rotations Rα about the axis and to reflections Kz about the
mid-height z = 0. The actions of the SO(2) symmetry generated by Rα and the Z2

symmetry generated by Kz on the velocity are

Rα(u, v, w)(r, θ, z, t) = (u, v, w)(r, θ + α, z, t), (3.3)

Kz(u, v, w)(r, θ, z, t) = (u, v, −w)(r, θ, −z, t). (3.4)

The symmetry group of the system is G = SO(2) × Z2.
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Figure 4. S1, the one-jet state: (a) computed isosurface of angular momentum at rv = 220
and (b) visualization of the experimental flow. S2, the two-jet state: (c) computed isosurface
at rv = 185 and (d) the experimental flow. Both states coexist and are stable at Γ = 3.00,
Re = 330 and η = 0.5.

4. Background results at low Re

The experimentally observed regimes and the bifurcation curves separating them
in the parameter region Γ ∈ [2.8, 3.5] and Re ∈ [0, 1000] are shown in figure 1.
We have already described the regimes and bifurcation curves below Re = 800 in
previous studies, and the present paper is focused on Re ∈ [800, 1000] where very rich
and complex dynamics develop just before the onset of turbulence. In order to place
these new results in context, a brief description of the previous results is presented
first. During the description, new tools for an appropriate analysis of the solutions
at large Re will be introduced. In particular, these include tools appropriate for the
characterization of the slow dynamics associated with the jets of angular momentum
and their relative phase.

4.1. The basic axisymmetric one- and two-jet states, S1 and S2

For very slow rotations (Re � 10), the angular momentum introduced by the rotating
inner cylinder is redistributed by viscous dissipation. As Re is increased, the angular
momentum builds up into a boundary layer on the rotating inner cylinder and is
redistributed into the interior by jets erupting from the boundary layer. For Re ∼ 100
and Γ ∼ 3, there are two Z2-symmetric steady axisymmetric states: one has a single
jet of angular momentum which erupts from the inner cylinder boundary layer at
mid-height z = 0 (the steady state S1), and the other has a pair of axisymmetric jets
erupting symmetrically about z = 0 (the steady state S2). The meridional recirculations
driven by the jets produce the familiar Taylor vortex flows. Isosurface plots of angular
momentum for S1 and S2 at a point in parameter space where they are both stable
(Re = 330, Γ = 3.0, η = 0.5), along with visualizations of the corresponding
experimental flows, are shown in figure 4. The competition between S1 and S2 is
organized by a codimension-two cusp bifurcation, where two codimension-one curves
of saddle-node bifurcations meet, at Re = 76, Γ = 3.81, off to the far right of the
region shown in figure 1. The details of the cusp bifurcation have been described in
detail elsewhere (Abshagen et al. 2005a , b; Lopez & Marques 2005). For the range
Γ ∈ [2.8, 3.5] considered in this study, S1 remains stable to large Re, and we focus
on the fate of S2 for Re ∈ [800, 1000].
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Figure 5. (a) Isosurface of axial angular momentum at rv = 320 for RWS at Γ = 3.15
and Re = 700, and (b) corresponding contours of rv in a (θ, z) section at r = ri + 0.3d
with v = 0.4Re. The tilt of the jets is out of phase by ΔΘ = 180◦ and their thickness is
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4.2. The symmetric rotating wave RWs

For Γ ∈ [2.9, 3.5], S2 is born at a saddle-node bifurcation SN with Re ≈ 200. The
SN bifurcation curve is shown in figure 1. On increasing Re to about 400, S2 becomes
unstable via a supercritical symmetry-breaking Hopf bifurcation H in which the
flow loses its axisymmetry as the two jets in S2 tilt and begin to precess, resulting
in a rotating wave RWS with azimuthal wavenumber m = 1 (figure 5a shows an
angular-momentum isosurface plot of RWS). The flow is steady in a reference frame
rotating with the precession frequency ωp; for this reason rotating waves are also
called relative equilibria. The tilt of the jets breaks the mid-height reflection symmetry
Kz, but since the tilts are in phase, RWS has a different Z2 symmetry consisting of a
reflection about z = 0 together with a π rotation about the axis, i.e. RWS is invariant
under K0 = Rπ ◦ Kz, which is a reflection about the origin, whose action is

K0(u, v, w)(r, θ, z, t) = (u, v, −w)(r, θ + π, −z, t). (4.1)

Figure 5(b) shows contours of the axial angular momentum rv in a (θ, z) planar
rendering of an r-constant cylindrical surface for the same RWS in figure 5(a). The
values of the radius and the azimuthal velocity of the contour plot are r = ri + 0.3d

and v = 0.4Re, giving rv = 0.52Re. The tilt of the jets results in two almost sinusoidal
shapes. The intensity of the two jets can be quantitatively estimated by measuring
the thickness of the upper and lower jets, ΔU

Z and ΔL
Z , at the location closest to the

corresponding endwall. We can also measure the angular difference between these two
locations, ΔΘ , as illustrated in figure 5(b). In order to compare different solutions,
we will always use the same values v = 0.4Re and r = ri + 0.3d . The K0 symmetry
of RWS results in ΔU

Z = ΔL
Z , and ΔΘ = 180◦. Note that the phase difference ΔΘ is

independent of the precession frequency of RWS as it is the same in any rotating
reference frame. As we shall see, the complex dynamics we analyse in this paper can
be completely characterized in terms of the phase ΔΘ .

Figure 1 shows that the bifurcation curves SN and H meet at a codimension-two
fold–Hopf point at about (Γ, Re) = (2.89, 3.54). As is typical for the dynamics in
the neighbourhood of a fold–Hopf point, a Neimark–Sacker bifurcation curve also
emanates from the fold–Hopf point (Guckenheimer 1984; Guckenheimer & Holmes
1997; Kuznetsov 2003). Note that all the Neimark–Sacker bifurcations found in
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Figure 6. Isosurfaces of axial angular momentum for MRWS over one modulation period, at
Γ = 3.14 and Re = 830. The isosurface value is rv = 380. Movie 1, available with the online
version, shows an animation of this sequence.

this study are secondary Hopf bifurcations from relative equilibria, and hence are
not generic Neimark–Sacker bifurcations; in particular, they do not have the usual
frequency-locking phenomena (Rand 1982; Krupa 1990). Hence, we shall refer to
these bifurcations as secondary Hopfs. The codimension-two fold–Hopf bifurcation
admits a number of different dynamical scenarios in its neighbourhood, depending
on the particulars of the system. From both experimental and numerical results,
Abshagen et al. (2005a) showed that the secondary Hopf bifurcation sH is a subcritical
bifurcation at which RWS loses stability as a modulated rotating wave (a relative
periodic orbit) is born, but it also is unstable due to the subcriticality of the bifurcation.
The result is that to the left of the sH curve (i.e. to lower Γ ), there are no stable states
local to the fold–Hopf bifurcation and the flow evolves towards the far-off stable S1.

4.3. The symmetric modulated rotating wave MRWs

On increasing Re beyond 600, RWS undergoes further instabilities. For Γ � 3.15, the
tilted jets of RWS develop a modulation in their precession which is half a period
out of phase between the two jets. This instability is a supercritical secondary Hopf
bifurcation sHS in which the relative equilibrium RWS loses stability and a stable
relative periodic orbit MRWS is spawned. The modulated rotating wave MRWS is
a quasi-periodic solution with two frequencies, but one of these corresponds to the
precession frequency ωp of the underlying RWS and plays no dynamic role in the
bifurcation. The other (modulation) frequency corresponds to the period τm = 2π/ωm

over which the tilted jets oscillate in and out of phase relative to each other. The
precession period (over the range of parameters considered) is about 0.03% of the
viscous time d2/ν, whereas the modulation period is at least one viscous time and
becomes unbounded in critical regions of parameter space. In a frame of reference
precessing with frequency ωp , MRWS is time periodic and possesses a spatio-temporal
symmetry S corresponding to a temporal evolution of τm/2 together with a K0

reflection (Abshagen et al. 2005a , b). The action of S on the velocity in the precessing
frame is

S(u, v, w)(r, θ, z, t) = (u, v, −w)(r, θ + π, −z, t + τm/2). (4.2)

Isosurface plots of the axial component of the angular momentum, rv, in the
precessing frame of reference at six phases of the modulation period τm are shown
in figure 6. The upper and lower jets undergo oscillations in the axial and azimuthal
directions. In the first two snapshots, the upper jet carries more angular momentum
than the lower jet, occupying a larger portion of the axial span of the cylinders.
Half a period later, the situation is reversed (compare isosurfaces at phases τm/6
and 2τm/6 with those at 4τm/6 and 5τm/6). In between, the two jets either slide up
(3τm/6) or down (6τm/6) in the axial direction. Movie 1, available with the online
version of the paper, is an animation of the sequence in figure 6. Figure 7 shows the



Bursting dynamics due to a homoclinic cascade in Taylor–Couette flow 367

0 1 2 3
t

0 1 2 3
t

90

180

270

360
(a) (b)

Δθ

0.10

0.11

0.12

0.13

0.14

ΔZ

Upper jet
Lower jet

Figure 7. Variation with time of (a) the phase difference ΔΘ and (b) the jet thicknesses ΔU
Z

and ΔL
Z , for MRWS at Γ = 3.14 and Re = 830.

(b)(a)

0 90 180 270 360

θ (deg.)

–1.0

–0.5

0

0.5

1.0

2z
/Γ ΔΘ

ΔZ
U

ΔZ
L

Figure 8. (a) Isosurface of axial angular momentum at rv = 320 for RWA at Γ = 3.20 and
Re = 700, and (b) corresponding contours of rv in a (θ, z) section at r = ri + 0.3d with
v = 0.4Re. The tilt of the jets is out of phase by ΔΘ = 255◦ and their thickness is ΔU

Z = 0.0641
and ΔL

Z = 0.0583.

evolution of the jet thicknesses and relative phase during two modulation periods.
The qualitative impressions observed in the movie are now clearly quantified. The
relative phase ΔΘ between the two jets, shown in figure 7(a), is no longer constant
at 180◦: it shows little variation for one third of the modulation period during which
ΔΘ ≈ 260◦ = 180◦ + 80◦, then moves rapidly to ΔΘ ≈ 100◦ = 180◦ − 80◦, where it
remains for about another third of the period, jumps back to ΔΘ ≈ 260◦, and repeats
the cycle. The intensity of the jets also increases and decreases during the modulation
period, as shown in figure 7(b).

4.4. The asymmetric rotating wave RWA

For Γ � 3.15, RWS loses stability at a pitchfork bifurcation PF; the jets become
tilted with their tilt angles out of phase, but they continue to precess uniformly.
This bifurcation breaks the reflection about the origin K0 and results in a pair of
asymmetric rotating waves, RWA and RW′

A, related by K0. The spatial structure
of RWA is illustrated by an angular momentum isosurface plot in figure 8(a), and
figure 8(b) shows contours of rv in a (θ, z) planar rendering of an r-constant cylindrical
surface for the same solution. The two jets have different intensities, with the upper jet
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Figure 9. (a) Schematic bifurcation diagram for the transition between regular oscillations
(RWA) and bursting dynamics (MRWS) involving a SNIC bifurcation and a pitchfork
bifurcation, along the path γ1 depicted in (b).

stronger than the lower jet (ΔU
Z = 0.0641 and ΔL

Z = 0.0583); the opposite is true for
the conjugate state RW′

A. The phase difference is no longer 180◦, instead ΔΘ = 255◦

for RWA and ΔΘ = 360◦ − 255◦ = 105◦ for RW′
A.

For Γ > 3.22, the pitchfork bifurcation PF producing RWA and RW′
A is

supercritical, whereas for Γ < 3.22, PF is subcritical producing a pair of unstable
rotating waves which subsequently undergo saddle-node bifurcations with RWA

and RW′
A. The important point is that these saddle-node bifurcations take place

simultaneously on MRWS. Looked at another way, as Γ increases toward 3.15
from below, the modulation period of MRWS grows without bound as saddle-nodes
(a pair of them due to the Z2 symmetry) develop on it, destroying MRWS and leaving
the stable RWA and RW′

A and their (unstable) saddle partners, together with the
heteroclinic connections between them. This is an SNIC bifurcation where saddle-
nodes develop on a relative periodic orbit (MRWS). A schematic of this bifurcation
is presented in figure 9(a), where the rotating waves are shown as (relative) equilibria
and the modulated rotating wave as a (relative) periodic orbit. The + signs indicate
the number of eigenvalues with positive real part of the relative equilibria RWS and
RWA. The one-dimensional path parameterized by γ1 is shown as a thick arc with an
arrow in parameter space in figure 9(b). The only feature not computed numerically
in the bifurcation diagram is the secondary pitchfork bifurcation of the unstable
RWS, whose presence is necessary in order to account for the two eigenvalues with
positive real part appearing at the secondary Hopf bifurcation sHS , and also to
provide the unstable RWA and RW′

A branches appearing at the SNIC bifurcation.
The bifurcation curves sHS and PF do not collide at a single point but, rather, all the
bifurcations depicted in figure 9(a) collapse in on a very small region in parameter
space shown as a hatched circle in figure 9(b) that has been described in detail in
Abshagen et al. (2005a). The SNIC bifurcation takes place for 690 � Re � 790
along the curve labelled SNIC at about Γ ≈ 3.15 (see figure 1 and the close-up
in figure 9b). This bifurcation curve separates the symmetric solutions (MRWS for
smaller Γ ) from the asymmetric solutions (RWA and RW′

A for larger Γ ). The time
intervals over which ΔΘ essentially remains constant, i.e. the quiescent phases, for
MRWS shown in figure 7, become increasingly longer as Γ is increased toward the
infinite-period SNIC bifurcation. Following the bifurcation, ΔΘ does not change any
more, remaining at one or the other of the quiescent values that corresponds to the
fixed constant ΔΘ of RWA or RW′

A.



Bursting dynamics due to a homoclinic cascade in Taylor–Couette flow 369

τm/6 2τm/6 3τm/6 4τm/6 5τm/6 τm
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at Γ = 3.17 and Re = 830. The isosurface value is rv = 370. Movies 2 and 3, available with
the online version, show animations of this sequence.
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5. New results at high Re

5.1. The asymmetric modulated rotating waves MRWA and MRW′
A

For Re � 740, the rotating waves RWA and RW′
A develop modulations via a

supercritical secondary Hopf bifurcation sHA, giving rise to a pair of asymmetric
modulated rotating waves MRWA and MRW ′

A. The sHA bifurcation curve becomes
tangential to the SNIC bifurcation curve at about Re = 790, at which point the SNIC
and sHA bifurcations cease to exist. For Re � 790, the transition between symmetric
and asymmetric solutions no longer occurs at a SNIC bifurcation. Instead, the
transition between the asymmetric solutions MRWA and MRW ′

A and the symmetric
MRWS takes place along the symmetry-breaking curve labelled PAC in figure 9(b).
This transition is much more complicated than the SNIC bifurcation, involving a
bifurcational process that is the primary object of the present study.

As is the case with MRWS, the quasi-periodic MRWA and MRW ′
A are also periodic

in a frame of reference rotating at their precession frequency. The modulation period
is comparable to the viscous time, and becomes unbounded as the SNIC curve is
approached; in comparison, the precession period is only about 0.03% of the viscous
time. Figure 10 shows isosurface plots of angular momentum over one modulation
period of MRWA in the precessing frame. Movie 2, available with the online version
of the paper, is an animation of this sequence, and movie 3 shows it in a stationary
frame of reference.

For MRWA, both jets undergo modulated oscillations in the azimuthal direction,
with the phase difference oscillating around a mean value ΔΘ ≈ 98.5◦ (ΔΘ for MRW ′

A

is 360◦ minus that for MRWA) and a peak-to-peak amplitude of the azimuthal
modulation of about 10◦, as illustrated in figure 11(a). Moreover, the lower jet is
thicker during the first half of the modulation period (shown in the first three
snapshots of figure 10) than in the second half (shown in the last three snapshots of
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Figure 12. (a) Low-pass-filtered time-series of the numerically computed axial velocity W for
the MRWS at Γ = 3.16205 and Re = 830. (b) Phase portrait reconstruction using time delays.

figure 10), as illustrated in figure 11(b); the opposite is true for MRW ′
A. Note that the

form of the jets changes substantially near the outer cylinder, so precise quantitative
estimates are difficult to make; this is the reason why the jet properties are measured
at a fixed radial location r = ri + 0.3d , close to the inner cylinder where the jets are
not too distorted by the outer cylinder.

Both MRWA and MRW ′
A are relative periodic orbits. Generically, a relative

periodic orbit can be expected to become unstable via saddle-node, period-doubling
or Hopf bifurcations, but symmetries may result in non-generic dynamics. Specifically,
for MRWS, the space–time symmetry S inhibits period-doubling (Swift & Wiesenfeld
1984), but with MRWA this Z2 symmetry has been broken and the generic behaviour
is expected for it. Period-doubling bifurcations (doubling the modulation period τm)
have been observed experimentally (see curve PD in figure 1 and the close-up in
figure 9b), and have also been detected numerically in the same region of parameter
space. As the period-doubling bifurcation is well understood, we focus here on the
new dynamics associated with the symmetry-breaking transition between MRWS and
MRWA (curve PAC in figure 9b).

5.2. Numerical results near symmetry breaking; jet dynamics and
phase space reconstruction

The numerical simulation of the complex flows we have described allows a more
detailed analysis of the flow structure, and of the fine structure associated with the
symmetry-breaking transition. However, as we are dealing with very low-frequency
modes, with periods going to infinity at the bifurcation, the computation of these
three-dimensional complex flows is very expensive, and an extensive exploration of
the parameter space is prohibitive. We have analysed in detail a one-dimensional
path in parameter space, at Re = 830 and varying Γ , crossing the symmetry-breaking
bifurcation line. Along this path, we have computed time-series of the axial velocity at
mid-gap (ri +ro)/2 and mid-height z = 0, Ŵ , and this quantity has also been measured
in the experiments. The resulting time-series include a large periodic component due
to the precession frequency of the rotating and modulated rotating waves, which is of
a kinematic nature and not dynamically important (Rand 1982; Krupa 1990). Since
the modulation frequency ωm is at least two orders of magnitude smaller than the
precession frequency ωp (as discussed in § 4.3 and § 5.1), ωm has been removed by

low-pass-filtering Ŵ , giving W . The time-series W (t) for MRWS at Γ = 3.16205 and
Re = 830 shown in figure 12(a) is strictly periodic, and we have rescaled time in
seconds for convenient comparisons with the experimental results in § 5.4.
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Figure 13. Phase-space reconstruction of (a) MRWS at Re = 830 and Γ = 3.16205,
(b) MRWA and its symmetric MRW ′

Aat Re = 830 and Γ = 3.165, and (c) MRWA on

its own at the same Re and Γ as in (b). The first row is from the computed time-series Ŵ (t)
and the second row corresponds to the low-pass-filtered time-series W (t).

We have also reconstructed phase-space trajectories using time delays, in order
to compare with the experimental results. Figure 12(b) shows the phase-space
reconstruction of the signal in figure 12(a), where we have plotted W (t + tD) against
W (t). The (non-dimensional) time delay used in the reconstruction is tD = 0.17, similar
to the one used in the reconstruction of the experimental data in § 5.4.

There are a number of ways to suppress the fast precession frequency. One
is to apply a low-pass-filter to the time-series (as is done experimentally). This
straightforward method is possible because the two frequencies are widely separated
(ωp is two orders of magnitude larger than ωm). Another way is locally smoothing
the time-series, averaging at each point over a temporal interval of the size of the
precession period τp . Yet another is to use a Poincaré section of the time-series,
strobing once every precession period τp , or equivalently looking at a fixed location
in a reference frame rotating with ωp . As there are many (topologically equivalent
but different) Poincaré sections, we have used the second method (local averaging)
which exactly coincides with the low-pass-filtering, and also coincides with one of the
Poincaré sections (at a particular phase during the precession period τp). The first
row in figure 13 shows the phase-space reconstruction of (a) MRWS, (b) MRWA and
MRW ′

A and (c) MRWA on its own, all at Re = 830 and Γ as indicated, without
filtering out ωp . The phase-space trajectories densely fill two-tori, corresponding to
quasi-periodic solutions with two frequencies. The second row in the figure shows the
same phase-space reconstructions, but of the low-pass-filtered time-series, resulting
in closed loops (relative periodic orbits). The scale for the plots in the two rows is
the same, illustrating the large oscillations corresponding to ωp (first row), and the
small modulations associated with ωm (second row). The figure clearly exhibits the
Z2 space–time symmetry of MRWS, manifested here as a half-turn symmetry around
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the centre of the phase-space plots, and the symmetrically related characteristics of
MRWA and MRW ′

A. It is also evident from the figure that the small loops in the
phase-space reconstruction of MRWS are very close to the phase-space trajectories
of MRWA and MRW ′

A.
Figure 14 compares the relative phase dynamics of the jets, described by ΔΘ and

ΔZ , with the phase-space reconstruction for MRWS at Re = 830 and Γ = 3.1616.
The plots show close-ups of the quiescent phase, where the MRWS is close to one
of the MRWA. Both the intensity and relative phase of the jets show oscillations
during this phase, and these correspond very closely to the loops in phase-space
around the MRWA (small loops in the second row of figure 13). As the symmetry-
breaking curve PAC is approached, the number of loops increases and the number
of oscillations during the quiescent phase increases accordingly. Therefore, the phase-
space reconstructions used in the experiments are directly related to the phase
dynamics of the jets.

5.3. The period-adding cascade and its accumulation point

The transition between the symmetric oscillations of MRWS and the non-symmetric
oscillations of MRWA for Re> 790 is accomplished via a complex bifurcational
process. Figure 15 shows the variation of the modulation period τm of the modulated
rotating waves in the neighbourhood of the symmetry-breaking bifurcation along the
one-dimensional path at Re = 830. Instead of a monotonic increase in τm going to
infinity as would correspond to a blue-sky bifurcation, we observe that MRWS suffers
a cascade of infinite-period bifurcations. As Γ → 3.1632 from below, the relative
periodic orbit MRWS executes an increasing number of loops around the ghost of
the relative periodic orbits MRWA and MRW ′

A. The switch between executing n and
n + 1 loops is accomplished by MRWS undergoing an infinite-period bifurcation.
As the number of loops increases, these bifurcations occur for smaller and smaller
increments in the parameter Γ . With each extra loop, the modulation period τm

of MRWS increases by an approximately constant value (approximately the sum
of the modulation periods of MRWA and MRW ′

A). At the accumulation point of
this period-adding cascade, both the length and period of the relative periodic orbit
MRWS become infinite and MRWS is destroyed, leaving MRWA and MRW ′

A at
larger Γ .

In order to determine the nature of the sequence of infinite period bifurcations,
figure 16 shows close-ups of the phase-space reconstructions around one of the small
loops, just before and after the infinite-period bifurcations between n and n + 1 loops
for n = 1 to 7, and just after the accumulation point. The first and last frames show
MRWS and MRWA solutions away from the bifurcation for comparison purposes.
We clearly see that the bifurcations are saddle-loop heteroclinics, where MRWS



Bursting dynamics due to a homoclinic cascade in Taylor–Couette flow 373

3.14 3.15 3.16 3.17

Γ

0

2

4

6

8

10

12

14
(a)

(b)

τm

τm

7 loops

6 loops

5 loops

4 loops

3 loops

2 loops

1 loop

3.16 3.161 3.162 3.163 3.164

Γ

0

2

4

6

8

10

12

14

1 loop

2 loops

3 loops

4 loops

5 loops
6 loops

7 loops

MRWA

Figure 15. Variation with Γ of the modulation periods τm of computed stable symmetric
relative limit cycles MRWS (•) and of computed stable pairs of symmetrically related relative
limit cycles MRWA (�) at Re = 830; (b) is a close up of the period-adding cascade regime
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collides with a pair of symmetrically related saddle solutions (only one is shown
in the close-ups, indicated by an open circle and short segments of its stable and
unstable manifolds). These asymmetric saddle solutions are very likely the RWA and
RW′

A rotating waves. Below Re = 790 these solutions were stable, so the collision
of MRWS with them resulted in the SNIC bifurcation described previously. Above
Re = 790, RWA and RW′

A become unstable at the secondary Hopf bifurcation sHA.
After the collision with the unstable saddle RWA, the solution trajectory evolves
away from RWA and the space–time Z2 symmetry S provides the global re-injection
mechanism that drives the trajectory towards the symmetrically related saddle RW′

A.
These unstable saddles provide a turnstile mechanism that progressively increases the
number of loops in a period-adding cascade of saddle-loop heteroclinic bifurcations,
culminating in the symmetry-breaking bifurcation point. Approaching the symmetry-
breaking bifurcation curve from above in Γ , what we observe in the last three frames
is the collision of the stable MRWA with the saddle RWA resulting in a saddle-loop
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Figure 16. Close-ups of the numerical low-pass-filtered projections of MRWS at Re = 830
and Γ as indicated. The saddle RWA is indicated by an open circle together with segments of
its stable and unstable manifolds in this projection.

homoclinic bifurcation where MRWA ceases to exist; but the presence of the Z2

symmetry results in the creation of a large loop around both saddles. This large loop
is the MRWS solution that undergoes the inverse period-adding cascade on further
decreasing Γ .

A schematic of this dynamics is presented in figure 17(a), where the rotating waves
are shown as relative equilibria and the modulated rotating waves as relative periodic
orbits, as was done in figure 9(a). The + signs indicate the number of eigenvalues
with positive real part of the relative equilibria RWS and RWA. The one-dimensional
path γ2 is shown as a thick arc with an arrow in parameter space in figure 17(b).
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MRWS becomes distorted as it approaches the (unstable) saddles RWA and RW′
A

and experiences repeated heteroclinic collisions with them in the PAC region. These
collisions do not modify the stability properties of the saddles. This bifurcation
scenario is similar to a blue-sky bifurcation in the sense that the relative periodic
orbit has both period and length going to infinity, but it differs in the fact that the
blue-sky is an isolated bifurcation, while here the infinite-length and infinite-period
bifurcation is the accumulation point of a period-adding cascade of heteroclinic
collisions.

As the trajectories of the MRWS come arbitrarily close to the saddle RWA at the
heteroclinic collisions, the nature of the saddle and its leading eigenvalues can be
determined. Figure 18(a) shows a detail of the trajectory of MRWS at Re = 830
and Γ = 3.16319, corresponding to the seven-loop solution in figure 16, very close
to the saddle. The solution trajectory enters the stable manifold of the saddle in
an oscillatory fashion, indicating that the eigenvalues of the saddle with negative
real part closest to the imaginary axis are a pair of complex-conjugate eigenvalues
−ρ ± iω. On exiting the neighbourhood of the saddle via its unstable manifold, the
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trajectory is smooth, corresponding to a single real positive eigenvalue, λ. This is
consistent with the schematics in figure 17(a), and suggests that the saddle is of
Shil’nikov type. Very close to the saddle the dynamics is completely dominated by
the leading eigenvalues of the saddle. In the invariant manifold corresponding to the
three leading eigenvalues, the dynamics is very well approximated by the ODE

ẋ1 = −ρx1 − ωx2,

ẋ2 = ωx1 − ρx2,

ẋ3 = λx3,

⎫⎬
⎭ (5.1)

whose general solution is

(x1, x2, x3)(t) = (Ae−ρt cos(ωt + δ), Ae−ρt sin(ωt + δ), z0e
λt ), (5.2)

where A, δ and z0 depend on the initial conditions at t = 0. Any dynamic variable, such
as W (t), will be a linear combination of the above xi in a neighbourhood of the saddle:
W (t) =

∑3
i=1 Cixi(t)+C4. We could try to fit such a function to the curve in figure 18(a),

and thus obtain the leading eigenvalues and the Ci . However it is more practical (in
order to eliminate the arbitrariness of the origin and the orientations of the axes)
to work with the modulus squared of the derivative, χ(t) = W ′(t)2 + W ′(t + tD)2. A
simple computation gives

χ(t) = (A1 + A2 cos(2ωt + δ1))e
−2ρt + A3e

(λ−ρ)t cos(2ωt + δ2) + A4e
2λt . (5.3)

Figure 18(b) is a plot of χ(t) corresponding to a segment of the trajectory in
figure 18(a). We observe an exponential decrease in χ(t) as the saddle is approached,
with oscillations, corresponding to the first term in (5.3), and an exponential increase
in χ(t) as the trajectory escapes the saddle, corresponding to the last term in (5.3). A
linear fit to these exponential behaviours gives the real parts of the leading eigenvalues:
ρ = 9.878 and λ = 9.574. The saddle quantity σ = λ−ρ = −0.304 determines whether
the dynamics in the neighbourhood of the saddle is chaotic (σ > 0) or not (σ < 0)
(see Kuznetsov 2003, chap. 6). In our case σ < 0 and the heteroclinic collisions do not
result in the formation of a chaotic attractor. Generically, such collisions with σ < 0
only result in the existence of a stable limit cycle that disappears after colliding with
the saddle. However our case is not generic due to the symmetries of the problem;
the Z2 symmetry provides a global reinjection mechanism that drives the unstable
manifold of the saddle RWA to the stable manifold of the symmetric-conjugate saddle
RW′

A, resulting in a new limit cycle with an extra loop.
Period-adding cascades have been observed and analysed in diverse settings,

involving repeated formation and breaking of global connections to a saddle-focus,
such as in amplitude-equation models of the Faraday waves problem (Higuera,
Porter & Knobloch 2002; Higuera, Knobloch & Vega 2005), and low-dimensional
ODE models of semiconductor lasers with optical injection (Yeung & Strogatz 1998;
Wieczorek, Krauskopf & Lenstra 2002; Krauskopf & Wieczorek 2002; Krauskopf &
Oldeman 2006). However, each of these model problems exhibit different dynamics
associated with the period-adding cascade. In the laser examples, the accumulation
process is characterized by an infinite series of saddle-node bifurcations of limit cycles.
In the Faraday waves model problem, the PAC also involves an infinite sequence
of saddle-node bifurcations, and each of those bifurcations are symmetry-changing
transitions, so that the limit cycle switches from being symmetric to asymmetric to
symmetric, and so on, with each period-adding event. In contrast, our PAC involves
an infinite series of saddle-loop homoclinic bifurcations where on either side of
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Figure 19. (a) Low-pass-filtered time-series of the LDV measured axial velocity W for the
MRWS at Γ = 3.1504 and Re = 823.3. (b) Phase portrait reconstruction using time delays.
(c) Close-up of the phase portrait reconstruction.

the SLH bifurcation, the limit cycle undergoing the bifurcation exists, is stable,
and retains its symmetry; the accumulation point of the PAC is the only point of
symmetry breaking in the sequence.

Knobloch, Hettel & Dangelmayr (1995) considered a second-order ordinary
differential equations model with reflection symmetry in which an infinite cascade of
heteroclinic bifurcations occurs in a small parameter regime. While their heteroclinic
cascade does not involve limit cycle solutions, and hence is not a PAC, it does
share with our problem that the cascade involves asymmetric attractors and that the
reflection symmetry is restored at the accumulation point.

In many of the aforementioned other examples involving PAC, chaotic dynamics
have been reported in the neighbourhood of the period-adding event. In the PAC
studied in this paper, no such chaotic dynamics occur in the numerical simulations (as
is expected due to the saddle quantity of the saddle-focus RWA involved), although
the experiments exhibit some erratic behaviour due to the very small drifts in Re,
as discussed in § 5.4. However, Lopez & Marques (2005) have previously observed a
PAC involving Shil’nikov chaos in the analysis of the dynamics associated with the
one-jet state, S1, in the Taylor–Couette problem with aspect ratio γ = 4.0, which is
slightly larger than that studied here.

5.4. Experimental observations near symmetry breaking: intermittency and bursting

In order to analyse the experimental results close to the symmetry-breaking curve
PAC shown in figure 17(b), a careful analysis of the LDV measurements is needed.
Long time-series of the axial velocity at mid-gap (ri + ro)/2 and mid-height z = 0,
Ŵ , are recorded using LDV measurements at a fixed angular position θ = 0 in the
laboratory reference frame. These time-series include a large periodic component due
to the precession frequency of the rotating and modulated rotating waves, that has
been removed by low-pass-filtering the LDV signal as it is acquired, giving W , in the
same way as in the numerical simulations.

Figure 19(a) shows a typical time-series of the low-pass-filtered W for MRWS at
Γ = 3.1504 and Re = 823.3, in arbitrary units corresponding to the LDV signal. The
signal W (t) clearly shows the Z2 space–time symmetry of MRWS, as it makes one
oscillation near its maximum value, followed by a rapid excursion to the symmetric
values (minima), where it make another oscillation, before jumping back to near the
maximum value. In order to better portray this behaviour, a phase-space has been
reconstructed using time delays. Figure 19(b) shows the phase-space reconstruction
of the signal in figure 19(a), where we have plotted W (t + tD) against W (t), and
used tD = 4 s. The oscillations near the maximum and minimum of W correspond to
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the two small loops in the phase-space plot, and the rapid excursions are the long
trajectories connecting them. These oscillations around the small loops correspond
to the quiescent time intervals observed in MRWS when it was close to RWA at
lower Re. At larger Re, MRWS approaches MRWA as Γ is increased, and so we
observe oscillations in the quiescent phase corresponding to a time evolution close to
MRWA. Recall that MRWA has a small-amplitude oscillation in ΔΘ around a mean
value away from the ΔΘ = 180◦ symmetric value . The correspondence between the
phase-space trajectories and ΔΘ (the evolution of the relative phase between the tilts
of the jets) has been explored in detail in § 5.2.

The comparison of the experimental data in figure 19 and the numerical simulations
in figure 12 is very good, the only difference being the units of W (non-dimensionalized
axial velocity for the numerics and uncalibrated voltage output from the LDV) and the
absence of noise in the simulations. Although the experimental time-series appears
periodic, the close-up of the phase trajectories shown in figure 19(c) indicates the
presence of experimental noise that makes every loop slightly different from the
preceding one.

Figure 20 shows the behaviour of the measured W (t) as the bifurcation curve
(labelled PAC in figure 17b) separating symmetric and non-symmetric MRW is
approached from the symmetric side. In figures 20(a) and 20(b) time-series and
phase portraits of MRWS for Γ = 3.1600 are shown, approaching the bifurcation
from above, for Re = 888.3 and Re = 879.2, respectively. There is an increase in
the number of turns around the small loops (MRWA) before the rapid excursions
between the opposite loops. This behaviour is much more spectacular in figures 20(c)
and 20(d), for Γ = 3.1680. The number of turns around MRWA becomes arbitrarily
large as the bifurcation curve is approached. On crossing the bifurcation curve, the
flow settles down onto either MRWA or MRW ′

A, without any further excursions
between the two symmetrically related states. The locations in (Γ, Re)-space of the
four experimental observations in figure 20 are shown as × symbols in figure 21, which
shows a close-up of the symmetry-breaking bifurcation curve.

Also, shown as a dashed line in figure 21 is the one-dimensional path in parameter
space, at Re = 830 and varying Γ , where the numerical simulations in § 5.2 and § 5.3
have been made. The sequence of infinite-period bifurcations described in figure 15 is
shown in parameter space in figure 21 as a sequence of vertical bars on the Re = 830
dashed line, accumulating at Γ = 3.1632. This numerical result compares well with
the experimentally determined curve; the difference between the experimental and
numerical bifurcation point is about 0.3% in Γ (for fixed Re), or about 5% in
Re (for fixed Γ ). Considering the experimental uncertainties in the parameters, the
experimental difficulty in determining the bifurcation point, the presence of noise and
the small imperfection breaking the Z2 symmetry not included in the numerics, and
also the effect of the truncation of the spectral expansion in the simulations, the
quantitative agreement is very good.

The reconstructed phase-space trajectories of the MRWS are closed curves (relative
periodic orbits) that develop infinite period and infinite length (due to the arbitrarily
many loops around MRWA and MRW ′

A executed each period) as the bifurcation
curve is approached. The number of turns around the two small loops in each cycle
in the phase portraits shown figure 20 is not constant, but varies in an erratic fashion.
The numerical simulations indicate that the observed intermitency and bursting
is noise-driven due to the small erratic drifts (below the level of experimental
accuracy) in the control parameters (Γ, Re). The numerical simulations, free from
noise and imperfections, show strictly periodic and relative periodic solutions for
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Figure 20. Experimental time-series and reconstructed phase portraits for different parameter
values. (a) Γ = 3.1600 and Re = 888.3; (b) Γ = 3.1600 and Re = 879.2; (c) Γ = 3.1680 and
Re = 907.6; (d) Γ = 3.1680 and Re = 905.0.

fixed parameter values (Γ, Re). It is worth mentioning that some of the experimental
phase portraits (see figure 20c, d) show sporadic jumps of the trajectory away from
the limit cycle; these are not due to the noise, but due to large isolated perturbations
of the experimental apparatus (the experimental runs lasted from several hours up to
a few days).

5.5. Effects of the imperfect Z2 symmetry

The time spent close to MRWA and its symmetric counterpart MRW ′
A becomes

longer as the symmetry-breaking PAC bifurcation curve is approached. However, in
the experiments there is a bias toward MRWA, around which the solution spends
more time than around MRW ′

A, and the symmetry-breaking almost always results in
an evolution to MRWA, with the symmetric counterpart MRW ′

A being much more
difficult to obtain. This corresponds to the presence of some imperfection in the
experiment that breaks the reflection symmetry z → −z of the apparatus. This small
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Figure 21. Close-up of the symmetry-breaking region (PAC ) in figure 9(b); filled circles
correspond to the experimentally determined bifurcation curve, × symbols correspond to the
experimental results shown in figures 19 and 20, the sequence of + symbols are the experimental
path shown in figure 22. The horizontal dashed line at Re = 830 is the one-parameter path
explored numerically; the vertical bars on it are the accumulating period-adding sequence
discussed in § 5.3.

imperfection has been previously reported (Abshagen 2000; Abshagen et al. 2005a)
in other experiments with the same apparatus. Depending on the region in parameter
space considered, the effects of the imperfection are more or less pronounced. In
figure 20, the asymmetry is not large, although some of the phase portraits show one
of the small loops (MRWA) to be more intense (corresponding to spending more time
there) than the other (MRW ′

A). Figure 22 corresponds to approaching the bifurcation
curve from above with Γ = 3.1552 for six different values of Re; the six points are
shown in figure 21 as + symbols. Far from the bifurcation point, at Re = 870.0, the
rapid excursions between MRWA and MRW ′

A (the two small loops) occur very often,
and on approaching the symmetry-breaking curve the rapid excursions become more
and more sparse, until they finally disappear at the bifurcation curve. The MRWS has
become MRWA; in the last frame at Re = 865.4, there is only one rapid excursion ob-
served in one and a half hours (for comparison, the precession period is about 0.46 s).

6. Discussion and conclusions
This study was motivated by the experiments of Abshagen (2000) where the

transition between symmetric bursting dynamics and asymmetric regular oscillations
resulted in the first experimentally observed bifurcation producing a (relative) periodic
orbit of infinite length and period. The natural candidate for such a bifurcation was
of blue-sky type, the only isolated bifurcation of limit cycles with infinite length
and period. To clarify the details of this novel phenomenon further experiments
and numerical simulations have been conducted, revealing the transition to be
more complicated than an isolated blue-sky bifurcation. Instead, it is a non-isolated
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Figure 22. Experimental time-series and reconstructed phase portraits of bursting solutions
for Γ = 3.1552 and decreasing Re values. (a) Re = 870.0; (b) Re = 869.1; (c) Re = 868.2;
(d) Re = 867.3; (e): Re = 866.3; (f ): Re = 865.4.
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infinite-period and infinite-length bifurcation, involving a period-adding cascade of
saddle-loop heteroclinic bifurcations.

In the neighbourhood of the accumulation point of the period-adding cascade,
as the number of loops increases, the saddle-loop heteroclinic bifurcations occur for
smaller and smaller increments in the parameter, and the effects of noise (e.g. due
to changes in Re induced by small temperature fluctuations) results in a drift of the
governing parameters leading to experimental time-series showing states with different
numbers of loops, as illustrated in figures 20 and 22. Although the solutions at fixed
values of the parameters are relative periodic orbits, they appear chaotic in the
experiments due to the parameter drifts caused by the unavoidable presence of noise.
Nevertheless, there is very close agreement between the computed and experimental
results, even very close to the accumulation point, as is illustrated by comparing the
phase portraits from experimental data in figures 20 and 22 with the numerically
obtained phase portraits in figures 12 and 16.

The physical flow feature associated with the loops is the azimuthal oscillations of
the jets we have observed in MRWA (figure 10). Each small loop in a MRWS solution
corresponds to a full azimuthal oscillation of MRWA. The excursions between loops
correspond to rapid excursions between MRWA and MRW ′

A, manifested as large
jumps in the relative phase of the jets ΔΘ , and in an axial oscillation of the jets: the
jet with the larger (smaller) axial span becomes the jet with smaller (larger) axial span.
This interchange is due to the action of the Z2 symmetry. During half of the MRWS

modulation period, the solution resembles MRWA, while during the other half-period
it resembles the Z2-conjugate MRW ′

A. This is clearly seen in the one-loop solution
shown in figures 6 and 7 as well as in the schematic bifurcation diagram in figure 17.

The dynamics associated to the fast time scale is simple (a periodic precession due
to SO(2) symmetry-breaking, whose dynamics are completely decoupled), and the
interesting dynamics including the period-adding cascade occurs in the slow-varying
variables associated with the phase dynamics of the tilted jets. The phenomenon is
robust, as shown by the detailed agreement between the numerical simulations and
the physical experiments with their inherent imperfections and noise.

While local linear stability analysis accounts for the first few bifurcations
and fully blown turbulence may be analysed using asymptotics, neither of these
approaches is applicable to the transition bifurcational process we have found. The
nonlinear dynamics approach provides a means for characterizing and gaining some
understanding of the transition. The Z2 symmetry seems to be central in providing
the system with the global re-injection mechanisms in the SNIC bifurcation and the
heteroclinic period-adding cascade. These complex dynamics are not easy to analyse,
either from the experimental or numerical points of view. Nevertheless, even at large
Reynolds numbers, we have shown that the flow behaviour can be captured by using
fundamental ideas from dynamical systems theory.

This work was partially supported by grants from Deutsche Forschungsgemeinsch-
aft (G. P. and J.A.), National Science Foundation (J.M. L.), Spanish Ministry of
Science and Technology and Catalonian Government (F. M.).

REFERENCES

Abshagen, J. 2000 Organisation chaotischer Dynamik in der Taylor-Couette-Strömung. PhD thesis,
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